

Extended Data Fig. 1 | Characterization of the membrane trafficking for 5-HT receptor-based chimeras. a, Representative fluorescence images of HEK293T cells co-expressing the indicated 5-HT receptors fused with cpGFP (green) and RFP-CAAX (red); EGFP-CAAX was used as a positive control. Similar results were observed for more than 100 cells. Scale bar, 10 µm. **b**, Normalized fluorescence intensity measured at the white dashed lines shown in (**a**) for each candidate sensor.

NATURE NEUROSCIENCE

а		_				_												_				_				_				_																		
cpGFP in 5-HT1.0	1	Ν	۷	Y	Т	ĸ	A [Þ	(Q	ĸ	Ν	G	Т	κ	Α	Ν	F	н	IF	ιн	Ν	Т	Е	D	G	G١	/ 0	۱L	Α	Y	н	Υ	QC	N	т	Ρ	Т	G	D	G	Р	V	LI	LI	P	D N	1	50
mClover3	1	Y	٧	Y	Т	Т	A [Þ	(Q	ĸ	Ν	С	Т	κ	Α	Ν	F	ĸ	I F	ιн	Ν	۷	Е	D	G	s١	/ Q	۱L	Α	D	н	Υ	QO	N	т	Ρ	Т	G	D	G	Р	V	LI	LI	P) N	I.	50
sfGFP	1	N	v	Y	I.	Т	A [) k	(Q	ĸ	N	G	I	κ	Α	N	F	ĸ	IF	R H	N	v	Е	D	G	s١	/ 0	۱L	A	D	н	Y	Q	Q N	т	Ρ	I.	G	D	G	P	V	L	LI	P [УМ	I.	50
cpGFP in 5-HT1.0	51	н	Y	L	s	v	QS	5 F	L	s	к	D	Р	N	Е	ĸ	R I	DI	HN	۱v	L	L	Е	F	v ·	тμ	A A	G	I	т	L	GΙ	мс) E	L	Y	к	G	G	т	G	G	Q I	E	5 I	N S	5	100
mClover3	51	н	Y	L	s	н	QS	5 K	L	s	κ	D	Ρ	Ν	Е	ĸ	R	DI	H N	۱v	L	L	Е	F	v ·	тμ	۹ A	G	Т	т	н	GΙ	мс	ь	L	Υ	κ	-	-	-	-	-	-	-	- N	νN	/	94
sfGFP	51	н	Y	L	s	т	QS	s١	/ L	s	κ	D	Ρ	Ν	Е	ĸ	R	DI	HN	۱v	L	L	Е	F	٧.	τA	A A	G	Т	т	н	GΙ	мс) E	L	Y	κ	-	-	-	-	-	-	-	- N	и.		93
																																			_							-		+		-		
cpGFP in 5-HT1.0	101	s	κ	G	Е	Е	LI	- 1	G	۷	۷	Ρ	Т	L	۷	Е	LI	D	GC	v	Ν	G	н	κ	F	s١	/s	G	Е	G	Е	GΙ	D A	١т	Т	G	κ	L	т	LI	κ	F	1	C .	r ٦	ГΘ	3	150
mClover3	95	s	κ	G	Е	Е	LI	- 1	G	۷	۷	Ρ	Т	L	۷	Е	LI	D	GC	v	Ν	G	н	κ	F	s١	/ R	G	Е	G	Е	GΙ	DA	١т	Ν	G	κ	L	т	LI	κ	F	1.0	C.	ГТ	ГΘ	3	144
sfGFP	94	s	κ	G	Е	E	LI	= 1	G	۷	۷	Ρ	Т	L	۷	Е	LI	D	GC	v	Ν	G	н	κ	F	s١	/ R	G	Е	G	Е	GΙ	DA	١т	Ν	G	κ	L	т	LI	κ	F	1.0	C.	T 1	гο	3	143
cpGFP in 5-HT1.0	151	κ	L	Ρ	٧	Ρ١	NF	ר י	Ľ	v	т	т	L	т	Y	G	v	Q	CF	s	R	Y	Ρ	D	н	NK	k a	۱	D	F	F	ĸ	s A	A M	P	Е	G	Y	L	Q	Е	R	т	I I	F I	FK	(200
mClover3	145	κ	L	Ρ	۷	Ρ١	NF	וי	Ľ	۷	т	т	F	G	Y	G	v,	A	CF	s	R	Y	Ρ	D	н	NK	< a	łΗ	D	F	F	ĸ	s 4	A M	P	Е	G	Y	v	Q	Е	R	т	I S	5 I	FK	<	194
sfGFP	144	κ	L	Ρ	v	Ρ١	NF	וי	Ľ	v	т	т	L	т	Y	G	v	Q	CF	s	R	Y	Ρ	D	н	N	K R	н	D	F	F	ĸ	s 4	A M	P	Е	G	Y	v	Q	Е	R	т	I s	5 F	FK	(193
cpGFP in 5-HT1.0	201	D	D	G	Ν	ΥI	Κī	F F	R A	E	۷	κ	F	Е	G	D	Т	Ľ١	VN	IR	Т	Е	L	Κ	G	1 0) F	K	Е	D	G	Ν	ιL	. G	Н	κ	L	Е	Y	Ν								246
mClover3	195	D	D	G	т	ΥI	Κī	F F	R A	Е	۷	κ	F	Е	G	D	т	Ľ١	VN	I R	I	Е	L	κ	G	1 0) F	ĸ	Е	D	G	Ν	ιL	. G	Н	κ	L	Е	Y	Ν								239
sfGFP	194	D	D	G	т	ΥI	ΚI	FF	R A	Е	۷	κ	F	Е	G	D	т	Ľ١	VN	I R	I	Е	L	κ	G	1 0) F	ĸ	Е	D	G	Ν	I L	. G	Н	κ	L	Е	Y	Ν								238
	Site	es i	n c	рG	FF	, cł	າວຣ	e f	or	scr	eel	nin	g		-	+	N	1uta	atic	ons	ad	lop	ted	by	/ th	e 5	5-H	T1.	0																			

Extended Data Fig. 2 | Sequence alignment of cpGFP from 5-HT1.0 sensor, sfGFP, and mClover3. a, The sequence of cpGFP from the 5-HT1.0 sensor, sfGFP, and mClover3 are aligned. Amino acids in the cpGFP chose for optimization are labeled with light green color, and the mutations adopted by the 5-HT1.0 sensor are indicated with red stars.

NATURE NEUROSCIENCE

Extended Data Fig. 3 | The amino acid sequence of 5-HT1.0. a, Schematic representation of the 5-HT1.0 structure. For simplicity, TM1-4, TM7, and H8 are not shown. **b**, The amino acid sequence of the 5-HT1.0 sensor after three steps of evolution. The mutated amino acids in cpGFP (cpGFP from GCaMP6s, see Chen, T.W., *et al.* 2013.) are indicated with red stars.

Extended Data Fig. 4 | See next page for caption.

NATURE NEUROSCIENCE

TECHNICAL REPORT

Extended Data Fig. 4 | Further characterization of GRAB_{5-HT} in cultured HEK293T cells and rat cortical neurons. a, Representative fluorescence and pseudocolor images of HEK293T cells expressing 5-HT1.0 or 5-HTmut before (left) and after (right) application of 10 µM 5-HT. Similar results were observed for more than 10 cells. Scale bar, 20 µm. b,c, Representative fluorescence traces and group summary of the peak response in HEK293T cells expressing 5-HT1.0 or 5-HTmut; n = 14 and 15 cells from 3 cultures for 5-HT1.0 and 5-HTmut group. Two-tailed Student's t-test was performed. $P = 8.18 \times 10^{-12}$ between 5-HT1.0 and 5-HTmut group. d, 5-HT dose-response curves measured in cells expressing 5-HT1.0 or 5-HTmut, the EC_{s0} for 5-HT1.0 is shown. n = 3 wells per group with 300-500 cells per well. e, Representative normalized fluorescence measured in HEK293T cells expressing 5-HT1.0, EGFP-CAAX, or iGluSnFR during continuous exposure to 488-nm laser (power: 350 µW). f, Summary of the decay time constant calculated from the photobleaching curves shown in (e). n=10/3, 14/3, and 12/3 for 5-HT1.0, EGFP-CAAX, and iGluSnFR, respectively. Two-tailed Student's t-test was performed. P=2.45×10⁻⁹, 1.90×10⁻⁹, 3.05×10⁻⁸, and 7.22×10⁻⁷ between EGFP-CAAX and iGluSnFR without or with Glu, and 5-HT1.0 without or with 5-HT. P = 4.43 × 10⁻⁸ and 7.78 × 10⁻⁶ between iGluSnFR without or with Glu and 5-HT1.0 without 5-HT. P = 4.62 × 10⁻⁸ and 7.05 × 10⁻⁶ between iGluSnFR without or with Glu and 5-HT1.0 with 5-HT. g, Summary of the brightness measured in HEK293T cells expressing 5-HT1.0 or 5-HT2C-EGFP in the absence or presence of 10 μ M 5-HT, normalized to the 5-HT2C-EGFP + 5-HT group; n = 3 wells per group with 300-500 cells per well. **h**,**i**, Intracellular calcium was measured in cells expressing 5-HT1.0 or the 5-HT2C receptor and loaded with the red fluorescent calcium dye Cal590. Representative traces are shown in (h), and the peak responses are plotted against 5-HT concentration in (i); n = 15/3 for each group. j,k, Fluorescence response of 5-HT1.0 expressing cells to 5-HT perfusion for two hours. Representative fluorescence images (j) and the summary data (k) showing the response to 10 µM 5-HT applied at 30 min intervals to cells expressing 5-HT1.0; n = 3 wells per group with 100-300 cells per well. Scale bar, 20 µm. F₄₁₀=0.888, P=0.505 for 0 min, 30 min, 60 min, 90 min and 120 min by one-way ANOVA. I, Left, the Gs-coupled cAMP level was detected by pink-Flamindo with or without 5-HT1.0 sensor expression. The exemplar fluorescence response traces of pink-Flamindo without (top) or with 5-HT1.0 sensor (bottom) expression, when treated with 50 µM 5-HT or 50 μ M 5-HT + 10 μ M Forskolin. Right, quantification data for left. n = 23/3, 23 cells from 3 cultures for each group. Two-tailed Student's t-test was performed. P=0.084 and P=0.488 for 5-HT and 5-HT + FSK group. **m**, Buffering effects of the 5-HT1.0 sensor by luciferase complementation assay. Luminescence signals were measured when treated with different concentrations of 5-HT (left) or 5-HT2C receptor specific agonist CP809101 (right) with or without co-expression of 5-HT1.0 sensor with 5-HT2C receptor. The luminescence signal of cells treated with the control buffer is normalized to 1. Data of 5-HT induced G-protein signaling in 5-HT2C receptor expression group were re-plotted from Fig. 1f. n = 3 wells per group with 100-300 cells per well. Two-tailed Student's t-test was performed. P = 0.693, 0.0402, 0.993, 0.340, 0.0618, 0.0691 and 0.127 between 5-HT1.0 and 5-HT1.0 + 5-HT2C with 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸, 10⁻⁹, and 10⁻¹⁰ M 5-HT. P = 0.733, 0.801, 0.346, 0.998, 0.304 and 0.380 between 5-HT1.0 and 5-HT1.0 + 5-HT2C with 10⁻⁴, 10⁻⁵, 10⁻⁶, 10⁻⁷, 10⁻⁸ and 10⁻⁹ M CP809101. **n**, Cultured rat cortical neurons expressing the 5-HTmut sensor were imaged before (left) and after (middle) 5-HT application. These insets in the left and middle fluorescence images show the region with increased contrast. The pseudocolor image on the right shows the change in fluorescence of 5-HTmut in response to 10 µM 5-HT. Similar results were observed for more than 10 neurons. Scale bar, 20 µm. o, p, Representative trace (o) and group summary (p) of cultured neurons expressing 5-HT1.0 in response to indicated compounds at 10 µM each; in (p), Met was applied where indicated; n = 9/3. Two-tailed Student's t-test was performed. P = 6.74×10^{-22} , 1.09×10^{-22} , 1.27×10^{-21} , 3.33×10^{-22} , and 0.0939between 5-HT^{1st} and DA, NE, His, ACh and 5-HT^{2nd}. P=1.97×10⁻¹¹ between 5-HT^{2nd} and Met. Data are shown as the mean±s.e.m. in **b-d**, **f**, **g**, **i**, **k-m**, **p**, with the error bars or shaded regions indicating s.e.m., *p < 0.05, ** p < 0.01, ***p < 0.001, and n.s., not significant.

NATURE NEUROSCIENCE

Extended Data Fig. 5 | Probing endogenous 5-HT release in mouse brain slices. a, Schematic diagram depicting the acute mouse brain slice preparation, with AAV-mediated expression of 5-HT1.0 in the hippocampus. b, Representative fluorescence images of the 5-HT1.0 sensor expressed in the mouse hippocampal neurons of brain slices in ACSF (left) and 50 μ M 5-HT (right). Similar results were observed from 4 slices. Scale bar, 50 μ m. c, A magnified view of the rectangular region in (b) showing the 5-HT1.0 sensor response to exogenously applied 50 μ M 5-HT; left, fluorescence image; right, corresponding pseudocolor image indicating ΔF/F₀. The arrowheads indicate somata. Scale bar, 15 μm. d, Representative traces (left) and quantification (right) of peak $\Delta F/F_0$ of the 5-HT1.0 sensor in response to 50 μ M 5-HT from a single soma or neurite (n = 4 slices from 1 mouse). Two-tailed Student's t-test was performed. P = 0.0226 between soma and neurite. e, Left, schematic diagram depicting the acute mouse brain slice preparation, with AAV-mediated expression of 5-HT1.0 in the DRN. Middle and right, fluorescence traces (middle) and group data (right) of the change in 5-HT1.0 fluorescence in response to 10 electrical stimuli applied at the indicated frequencies; n = 7 slices from 5 mice. f, Summary of the change in 5-HT1.0 fluorescence in response to 6 trains of electrical stimuli (20 pulses at 20 Hz) delivered at 5-min intervals. The responses are normalized to the first train; n = 8 slices from 5 mice. $F_{5,42}$ = 1.18, P = 0.335 for 0 min, 5 min, 10 min, 15 min, 20 min, and 25 min by one-way ANOVA. **g,h**, Representative fluorescence image, pseudocolor images (g), fluorescence traces (h, left), and group data (h, right) of 5-HT1.0 fluorescence in response to perfusion of 5-HT, 5-HT + Halo, and 5-HT + Met; n = 4 slices from 3 mice for each group. Two-tailed Student's t-test was performed. P=0.0816 between 5-HT and Halo. P = 0.00297 between 5-HT and Met. i, Left, representative FSCV data of 5-HT release in DRN. A specific 5-HT waveform (0.2 V to 1.0 V and ramped down to -0.1V, and back to 0.2 V at a scan rate of 1000 V/s) was applied to the CFME at a frequency of 10 Hz. Right, current vs time traces are extracted at a horizontal white dashed line shows an immediate increase in 5-HT response after electrical stimulation (20 pulses, 2 ms pulse width, 64 Hz). A cyclic voltammogram (inset) is extracted at the vertical black dashed line shows oxidation and reduction peaks at 0.8 V and 0 V, respectively. j, Left, group data of fluorescence response in 5-HT1.0-expressing DRN neurons to electrical stimuli with varied frequencies delivered at 20 pulses. Right, average data of peak 5-HT concentration measured by FSCV at varied stimulating frequencies delivered at 20 pulses; n = 11 neurons from 9 mice. Data are shown as the mean±s.e.m. in **d-f**, **h**, **j**, with the error bars or shaded regions indicating s.e.m., *p < 0.05, ** p < 0.01, ***p < 0.001, and n.s., not significant.

NATURE NEUROSCIENCE

TECHNICAL REPORT

Extended Data Fig. 6 | Probing endogenous 5-HT release in Drosophila in vivo. a, Schematic drawing showing *in vivo* two-photon imaging of a Drosophila, with the stimulating electrode positioned near the mushroom body (MB). **b**, **c**, Representative pseudocolor images (**b**), fluorescence traces, and group summary (**c**) of the change in 5-HT1.0 fluorescence in the MB horizontal lobe in response to 40 electrical stimuli at 15 Hz in control (saline) or 10 μ M Met; n = 9 flies for each group. Two-tailed Student's t-test was performed. P = 2.36 × 10⁻⁵ between saline and Met. Scale bar, 10 μ m. **d**, Fluorescence images measured in the MB of flies expressing 5-HT1.0 or 5-HTmut; the β' lobe is indicated. Scale bar, 10 μ m. **e-i**, Representative pseudocolor images (**e**), fluorescence traces (**f-h**), and group summary (**i**) of 5-HT1.0 and 5-HTmut in the MB β' lobe measured in response to a 1-s odor application, a 0.5-s body shock, and application of 100 μ M 5-HT; n = 14, 12 and 10 flies for 5-HT1.0 group under odor, body shock and perfusion conditions; n = 9, 5 and 9 flies for 5-HTmut group under odor, body shock and perfusion conditions. Two-tailed Student's t-test was performed. P = 1.14 × 10⁻⁵, P = 0.00273, P = 8.93 × 10⁻⁵ between 5-HT1.0 and 5-HTmut under odor, body shock and perfusion conditions. **j,k**, Quantification data of area under the calcium transient curves (**k**) and the τ on, τ off (**j**) in the main Fig. 2r,s; n = 11 and 10 flies for 5-HT1.0⁺ and 5-HT1.0⁺ group. Two-tailed Student's t-test was performed. P = 0.497 for calcium signal between two groups. P = 0.710 for τ on and P = 0.307 for τ off. Data are shown as the mean \pm s.e.m. in **c**, **i-k**, with the error bars or shaded regions indicating s.e.m., *p < 0.05, ** p < 0.01, *** p < 0.001, and n.s., not significant.