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Figure S1. Plasma membrane trafficking profile of the initial prototypes and the finalized sensors in cultured

HEK293T cells, related to Figure 1.

(A) Summary of the reported EC50 values for the indicated human HA receptors (source:

https://www.guidetopharmacology.org/GRAC/LigandActivityRangeVisForward?ligandId=1204).

(B) Analysis of fluorescence and membrane trafficking of all four human HA receptors containing cpEGFP expressed in

HEK293T cells; membrane-targeted RFP (RFP-CAAX) was co-expressed to label the plasma membrane. Left,

fluorescence images of HEK293T cells expressing the indicated HA receptor-based chimeras (green) and RFP (red).

Middle, normalized line-scanning plots of the fluorescence signals measured in both the green and red channels. Right,

summary of Pearson’s co-localization ratio measured between the indicated HA receptor-based chimeras and RFP-

CAAX; *** P <0.001 versus hH4R. Scale bar, 20 μm.

(C) Summary of the EC50 values for the indicated HA sensors to HA in cultured HEK293T cells. n.d., not determined

(D) Plasma membrane trafficking profile of the final design sensors in cultured HEK293T cells. Left, fluorescence images

of HEK293T cells expressing the indicated HA sensor (green), RFP-CAAX (red), and nuclear dye DRAQ5 (purple).

Middle, normalized line-scanning plots of the fluorescence signals measured in both the green, red, and purple channels.

Right, summary of Pearson’s co-localization ratio measured between the indicated HA sensor and RFP-CAAX or nuclear

dye. Scale bar, 50 μm. n = 23, 23, and 24 cells from 3 wells for HA1h, HA1m, and HA1mut, respectively.
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Figure S2. Strategy for optimizing and screening the GRABHA sensors, related to Figure 1.

(A1) A flowchart showing the development process of the GRABHA1h and GRABHA1mut sensors. Responses to 10 μM

HA of candidate sensors were shown alongside each step.

(A2) Optimization of candidate HA sensors based on the human H1R.

(B) A flowchart showing the development process of the GRABHA1m sensor. Responses to 100 μM HA of candidate

sensors were shown alongside each step.
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Figure S3. The amino acid sequences of the GRABHA sensors, related to Figure 1.
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(A, B) The amino acid sequences of the GRABHA1h (A) and GRABHA1m (B) sensors are shown, with the indicated

domains shown above. Also shown is the location of the E211A mutation (blue arrowhead) in GRABHA1h to generate

the GRABHA1mut sensor. The N1 of cpEGFP is indicated by the black box.

(C) The summary of amino acids in cpEGFP in different genetically encoded sensors and fluorescent protein,

including GPCR-based sensors and other protein backbone-based sensors. Amino acids shaded in green and gray

indicate identical and different residues, respectively.



Figure S4. Characterization of the wavelength spectra and specificity of HA sensors expressed in cultured

HEK293T cells, related to Figure 2.

(A) One-photon excitation (Ex) and emission (Em) spectra (top panel) and two-photon excitation spectra (bottom panel)

of HA1h and HA1m measured in the absence and presence of HA.

(B) Summary of the normalized change in fluorescence measured for HA1h (top panel) and HA1m (bottom panel)

expressed in cultured HEK293T cells in response to the indicated compounds (applied at 5 μM each); see Figure 2 for

abbreviations. n = 3 wells for different groups. Paired two-tailed Student’s t-tests were performed. *** P < 0.001; n.s., not

significant.
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Figure S5. Photostability of GRABHA sensors, related to Figure 2.

(A-C) Photostability measurement under confocal bleaching condition. (A), Normalized fluorescence of EGFP-CAAX, or

HA1h and HA1m (in the absence and presence of 100 μM HA) in the cultured HEK293T cells during confocal laser

bleaching. (B), Integrated fluorescence of EGFP-CAAX, or HA1h and HA1m (in the absence and presence of 100 μM HA)

shown in (A). n = 4 cultures. Boxes show the first and third quartiles as well as the median. (C), Fast and slow time

constants and component amplitudes of EGFP or corresponding sensor traces fit by double exponentials. Two-tailed

Student’s t-tests were performed. ** P < 0.01, *** P < 0.001; n.s., not significant.

(D-F) Photostability measurement under wide field bleaching condition. (D), Normalized fluorescence of StayGold-CAAX,

or HA1h and HA1m (in the absence and presence of 100 μM HA) in the cultured HEK293T cells during wide field LED

bleaching. Breaks (in D) are due to the time limitation of the illumination system. (E), Integrated fluorescence of

StayGold-CAAX, or HA1h and HA1m (in the absence and presence of 100 μM HA) shown in (D). (F), t50 of StayGold or

corresponding sensor traces. n = 3 cultures. Two-tailed Student’s t-tests were performed. *** P < 0.001.
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Figure S6. 3-h recording of HA1h and HA1m expressed in cultured cortical neurons, related to Figure 2.

Shown are fluorescence images (A) and summary data (B) of the indicated HA sensors expressed in cultured neurons

before (Pre) and during a 3-h application of HA at saturating concentration, followed by application of the

corresponding antagonist. n = 3 wells for each group.
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Figure S7. [3H]HA radioligand binding assay for HA1h sensor, related to Figures 1 and 2.

(A) Binding affinity measurement. Specific binding of increasing concentrations [3H]HA to HEK293T cell homogenates

expressing HA1h, HA1mut, or hH4R. TB: total binding, NSB: nonspecific binding.

(B) [3H]HA radioligand competition binding assay for measurement of [3H]HA (8.5 nM) binding to test whether HA, H4R

agonist, HA precursor, HA metabolites, and other monoamines, neurotransmitters, and chemicals (all compounds were

applied at 30 μM) bind to HA1h sensor (top panel) and WT hH4R (bottom panel).

A B

0 10 20 30

0

1000

2000

[3H]HA (nM)

[3
H

]H
A

 b
in

d
in

g
 (

d
p
m

)

TB

NSB

0 10 20 30

0

1000

2000

[3H]HA (nM)

[3
H

]H
A

 b
in

d
in

g
 (

d
p
m

)

TB

NSB

Kd (nM)

HA1h 13.2 ± 2.0

hH4R 6.7 ± 0.7

HA1h HA1mut

hH4R

Total binding (TB) Nonspecific binding (NSB)

Figure S7



Figure S8. Wake-promoting agent, H3R antagonist, enhanced HA level in the PFC of mice, related to Figures 4

and 5.

(A) Typical traces of EEG, EMG and HA1h signals after administration of wake-promoting agents, H3R antagonist,

ciproxifan at 3 mg/kg, or caffeine at 15 mg/kg, or vehicle in WT mice, extend shown time in Figure 5I.

(B) Time courses of wake probability before and after administration of ciproxifan, caffeine and vehicle, extend shown

time in Figure 5J.

(C) Time courses of HA1h signals before and after administration of ciproxifan, caffeine and vehicle, extend shown time

in Figure 5K.

(D) Typical traces of EEG, EMG and HA1m signals after administration of H3R antagonist, ciproxifan at 3 mg/kg in WT

mouse (left panel) and HDC KO mouse (right panel).

(E) Time courses of HA1m signals before and after administration of ciproxifan in WT mouse and HDC KO mouse.

(F) Ground data of HA1m signals before and after administration of ciproxifan in WT mouse and HDC KO mouse. Two-

way ANOVA between genotype and time; F(time) = 9.6457, P = 0.0267, pre-post comparisons followed by Sidak’s test

WT pre vs post P = 0.0107, HDC KO pre vs post P = 0.9989;
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Figure S9. HA1h can be used to measure HA dynamics over one day in vivo, related to Figure 5.

(A) Schematic diagram depicting Simultaneous recording of HA1h in the PFC and POA during sleep–wake cycles.

(B) Typical traces of EEG, EMG and HA1h signals over 24h. The brain states are color-coded.

(C) Summary data of first and last hour averaged HA1h peak signals. Paired two-tailed Student’s t-tests were performed.

t = 2.184, P = 0.161; n.s., not significant.
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Figure S10. Model depicting two possible explanations for the difference in HA release kinetics between the 

POA and PFC, related to Figure 6.
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